/* * CNC-remote-control * Button processor * * Copyright (C) 2009-2016 Michael Buesch * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include "util.h" #include "spi_interface.h" #include #include #include #include typedef uint16_t jiffies_t; #define BUTTON_DEBOUNCE msec2jiffies(40) #define ENC_DEBOUNCE usec2jiffies(3500) /* Hardware state of a button */ struct button_hwstate { bool state; /* 1 = pressed, 0 = released */ bool synchronized; /* Is synchronized with software state? */ jiffies_t sync_deadline; /* Deadline for sync */ }; /* Hardware state of a torque encoder */ struct encoder_hwstate { uint8_t gray; /* The graycode state */ uint8_t prev_gray; bool synchronized; /* Is synchronized with software state? */ jiffies_t sync_deadline; /* Deadline for sync */ }; /* Software state of a torque encoder */ struct encoder_swstate { int8_t state; }; static struct button_hwstate hwstates[14]; static uint16_t swstates; static struct encoder_hwstate enc_hwstates[1]; static struct encoder_swstate enc_swstates[1]; /* Convert 2bit graycode to binary */ static inline uint8_t gray2bin_2bit(uint8_t graycode) { if (graycode & 2) graycode ^= 1; return graycode; } static void jiffies_init(void) { #define JPS 31250 /* jiffies per second */ /* Initialize the timer to 8M/256=31250 */ TCNT1 = 0; OCR1A = 0; TIMSK = 0; TCCR1A = 0; TCCR1B = (0 << CS10) | (0 << CS11) | (1 << CS12); } #define msec2jiffies(ms) ((jiffies_t)((uint32_t)(ms) * JPS / (uint32_t)1000)) #define usec2jiffies(us) ((jiffies_t)((uint32_t)(us) * JPS / (uint32_t)1000000)) #define time_after(a, b) ((int16_t)(b) - (int16_t)(a) < 0) #define time_before(a, b) time_after(b, a) static inline jiffies_t jiffies_get(void) { return TCNT1; } static inline void do_button_read(struct button_hwstate *hw, bool state, jiffies_t timestamp) { if (state != hw->state) { hw->state = state; hw->synchronized = 0; hw->sync_deadline = timestamp + BUTTON_DEBOUNCE; } } static inline void do_encoder_read(struct encoder_hwstate *hw, bool a, bool b, jiffies_t timestamp) { uint8_t gray; gray = (uint8_t)((uint8_t)a | ((uint8_t)b << 1u)); if (gray != hw->gray) { hw->gray = gray; hw->synchronized = 0; hw->sync_deadline = timestamp + ENC_DEBOUNCE; } } /* Read the hardware states of the buttons */ static void buttons_read(void) { uint8_t b, c, d; jiffies_t now; b = PINB; c = PINC; d = PIND; now = jiffies_get(); /* Interpret the buttons */ do_button_read(&hwstates[0], !(b & (1 << 0)), now); do_button_read(&hwstates[1], !(b & (1 << 1)), now); do_button_read(&hwstates[2], !(c & (1 << 0)), now); do_button_read(&hwstates[3], !(c & (1 << 1)), now); do_button_read(&hwstates[4], !(c & (1 << 2)), now); do_button_read(&hwstates[5], !(c & (1 << 3)), now); do_button_read(&hwstates[6], !(c & (1 << 4)), now); do_button_read(&hwstates[7], !(c & (1 << 5)), now); do_button_read(&hwstates[8], !(d & (1 << 0)), now); do_button_read(&hwstates[9], !(d & (1 << 1)), now); do_button_read(&hwstates[10], !(d & (1 << 2)), now); do_button_read(&hwstates[11], !(d & (1 << 3)), now); do_button_read(&hwstates[12], !(d & (1 << 4)), now); do_button_read(&hwstates[13], !(d & (1 << 5)), now); BUILD_BUG_ON(ARRAY_SIZE(hwstates) != 14); BUILD_BUG_ON(ARRAY_SIZE(hwstates) > sizeof(swstates) * 8); /* Interpret the torque encoders */ do_encoder_read(&enc_hwstates[0], !(d & (1 << 6)), !(d & (1 << 7)), now); BUILD_BUG_ON(ARRAY_SIZE(enc_hwstates) != 1); BUILD_BUG_ON(ARRAY_SIZE(enc_hwstates) != ARRAY_SIZE(enc_swstates)); } static void buttons_init(void) { uint8_t i; /* Configure inputs and pullups */ DDRB = (uint8_t)(DDRB & ~0x03u); PORTB = (uint8_t)(PORTB | 0x03u); DDRC = (uint8_t)(DDRC & ~0x3Fu); PORTC = (uint8_t)(PORTC | 0x3Fu); DDRD = (uint8_t)(DDRD & ~0xFFu); PORTD = (uint8_t)(PORTD | 0xFFu); buttons_read(); for (i = 0; i < ARRAY_SIZE(enc_hwstates); i++) enc_hwstates[i].prev_gray = enc_hwstates[i].gray; } static void trigger_trans_interrupt(void) { SPI_SLAVE_TRANSIRQ_PORT = (uint8_t)(SPI_SLAVE_TRANSIRQ_PORT & ~(1u << SPI_SLAVE_TRANSIRQ_BIT)); nop(); nop(); SPI_SLAVE_TRANSIRQ_PORT = (uint8_t)(SPI_SLAVE_TRANSIRQ_PORT | (1u << SPI_SLAVE_TRANSIRQ_BIT)); } static inline uint8_t do_sync_button(struct button_hwstate *hw, uint8_t swstate_bit, jiffies_t now) { bool state; if (!hw->synchronized) { if (time_after(now, hw->sync_deadline)) { state = hw->state; irq_disable(); if (state) swstates |= (1u << swstate_bit); else swstates &= ~(1u << swstate_bit); irq_enable(); hw->synchronized = 1; return 1; } } return 0; } static inline uint8_t do_sync_encoder(struct encoder_hwstate *hw, struct encoder_swstate *sw, jiffies_t now) { uint8_t cur, prev; if (!hw->synchronized) { if (time_after(now, hw->sync_deadline)) { cur = gray2bin_2bit(hw->gray); prev = gray2bin_2bit(hw->prev_gray); hw->prev_gray = hw->gray; hw->synchronized = 1; if (cur == ((prev + 1) & 3)) { irq_disable(); sw->state--; irq_enable(); return 1; } if (cur == ((prev - 1) & 3)) { irq_disable(); sw->state++; irq_enable(); return 1; } } } return 0; } /* Synchronize the software state of the buttons */ static void buttons_synchronize(void) { uint8_t i, one_state_changed = 0; jiffies_t now; now = jiffies_get(); /* Sync buttons */ for (i = 0; i < ARRAY_SIZE(hwstates); i++) { one_state_changed |= do_sync_button(&hwstates[i], i, now); } /* Sync encoders */ for (i = 0; i < ARRAY_SIZE(enc_hwstates); i++) { one_state_changed |= do_sync_encoder(&enc_hwstates[i], &enc_swstates[i], now); } if (one_state_changed) trigger_trans_interrupt(); } static noreturn void enter_bootloader(void) { irq_disable(); wdt_reset(); /* Jump to bootloader code */ __asm__ __volatile__( "ijmp\n" : /* None */ : [_Z] "z" (BOOT_OFFSET / 2) ); unreachable(); } ISR(SPI_STC_vect) { uint8_t data; static uint8_t checksum; static bool enterboot_first_stage_done; data = SPDR; switch (data) { case SPI_CONTROL_ENTERBOOT: data = SPI_RESULT_OK; checksum = 0; enterboot_first_stage_done = 1; goto out; case SPI_CONTROL_ENTERBOOT2: if (enterboot_first_stage_done) enter_bootloader(); data = SPI_RESULT_FAIL; checksum = 0; goto out; default: enterboot_first_stage_done = 0; } switch (data) { case SPI_CONTROL_GETLOW: data = swstates & 0xFF; checksum ^= data; break; case SPI_CONTROL_GETHIGH: data = (uint8_t)((swstates >> 8) & 0xFFu); checksum ^= data; break; case SPI_CONTROL_GETENC: data = (uint8_t)(enc_swstates[0].state); enc_swstates[0].state = 0; checksum ^= data; break; case SPI_CONTROL_GETSUM: data = checksum ^ 0xFF; checksum = 0; break; case SPI_CONTROL_TESTAPP: data = SPI_RESULT_OK; checksum = 0; break; case SPI_CONTROL_ENTERAPP: case SPI_CONTROL_NOP: default: data = 0; checksum = 0; } out: SPDR = data; } static void spi_init(void) { /* SPI slave mode 0 with IRQ enabled. */ DDRB = (uint8_t)(DDRB | (1u << 4/*MISO*/)); DDRB = (uint8_t)(DDRB & ~((1u << 5/*SCK*/) | (1u << 3/*MOSI*/) | (1u << 2/*SS*/))); SPI_SLAVE_TRANSIRQ_PORT = (uint8_t)(SPI_SLAVE_TRANSIRQ_PORT | (1u << SPI_SLAVE_TRANSIRQ_BIT)); SPI_SLAVE_TRANSIRQ_DDR = (uint8_t)(SPI_SLAVE_TRANSIRQ_DDR | (1u << SPI_SLAVE_TRANSIRQ_BIT)); SPCR = (1u << SPE) | (1u << SPIE) | (0u << CPOL) | (0u << CPHA); (void)SPSR; /* clear state */ (void)SPDR; /* clear state */ } int main(void) _mainfunc; int main(void) { irq_disable(); wdt_enable(WDTO_500MS); jiffies_init(); buttons_init(); spi_init(); irq_enable(); while (1) { buttons_read(); buttons_synchronize(); wdt_reset(); } }