component homecomp"homing module template"; description """ Example of a homing module buildable with halcompile. Demonstrates required code for #includes, function definitions, etc. If \\fBHOMING_BASE\\fR is #defined and points to a valid homing.c file, an example of a customized homing module is built. This module creates input hal pins joint.n.request-custom-homing that enable an alternate joint homing state machine for requested joints. A hal output pin joint.N.is_custom-homing verifies selection" The customized homing module utilizes many of the base homing api routines from homing.c without modification but augments other base functions to add support for custom hal pins and custom joint homing state machines. A user-built module will likely replace additional api functions or augment them with other customizations. If \\fBHOMING_BASE\\fR Is not #defined, an actual homing scheme is \\fBnot\\fR implemented but all necessary functions are included as skeleton code. (All joints are effectively homed at all times and cannot be unhomed). See the source code file: src/emc/motion/homing.c for the baseline implementation that includes all functions for the default \\fBhomemod\\fR module. To avoid updates that overwrite homecomp.comp, best practice is to rename the file and its component name (example: \\fBuser_homecomp.comp, user_homecomp\\fR). The (renamed) component can be built and installed with halcompile and then substituted for the default homing module (\\fBhomemod\\fR) using:\n $ linuxcnc \\fB-m user_homecomp\\fR someconfig.ini\n or by inifile setting: \\fB[EMCMOT]HOMEMOD=user_homecomp\\fR \\fBNote:\\fRIf using a deb install:\n 1) halcompile is provided by the package linuxcnc-dev\n 2) This source file for BRANCHNAME (master,2.9,etc) is downloadable from github:\n https://github.com/LinuxCNC/linuxcnc/blob/BRANCHNAME/src/hal/components/homecomp.comp """; pin out bit is_module=1; //one pin is required to use halcompile) license "GPL"; author "Dewey Garrett"; option homemod; option extra_setup; ;; /* To incorporate default homing.c file from a local git src tree: ** enable #define HOMING_BASE set to the path to the current homing.c file. ** (Note: CUSTOM_HOMEMODULE precludes duplicate api symbols) ** (Edit myname as required for valid path) */ // #define HOMING_BASE /home/myname/linuxcnc-dev/src/emc/motion/homing.c #define STR(s) #s #define XSTR(s) STR(s) #include "motion.h" #include "homing.h" static char *home_parms; RTAPI_MP_STRING(home_parms,"Example home parms"); // EXTRA_SETUP is executed before rtapi_app_main() EXTRA_SETUP() { if (!home_parms) {home_parms = "no_home_parms";} rtapi_print("@@@%s:%s: home_parms=%s\n",__FILE__,__FUNCTION__,home_parms); #ifndef HOMING_BASE rtapi_print("\n!!!%s: Skeleton Homing Module\n\n",__FILE__); #else rtapi_print("\n!!!%s: HOMING_BASE=%s\n" "!!!Customize using hal pin(s): joint.N.request-custom-homing\n" ,__FILE__,XSTR(HOMING_BASE)); #endif return 0; } //===================================================================== #ifdef HOMING_BASE // { begin CUSTOM example #define USE_HOMING_BASE XSTR(HOMING_BASE) // NOTE: CUSTOM_HOMEMODULE: disables duplicate symbols sourced from homing.c #define CUSTOM_HOMEMODULE #include USE_HOMING_BASE typedef struct { bool request_custom_homing; bool is_custom_homing; } custom_home_local_data; static custom_home_local_data customH[EMCMOT_MAX_JOINTS]; // data for per-joint custom-homing-specific hal pins: typedef struct { hal_bit_t *request_custom_homing; // input requests custom homing hal_bit_t *is_custom_homing; // output verifies custom homing } custom_one_joint_home_data_t; typedef struct { custom_one_joint_home_data_t custom_jhd[EMCMOT_MAX_JOINTS]; } custom_all_joints_home_data_t; static custom_all_joints_home_data_t *custom_joint_home_data = 0; static int custom_makepins(int id,int njoints) { int jno,retval; custom_one_joint_home_data_t *addr; custom_joint_home_data = hal_malloc(sizeof(custom_all_joints_home_data_t)); if (custom_joint_home_data == 0) { rtapi_print_msg(RTAPI_MSG_ERR, "HOMING: custom_all_joints_home_data_t malloc failed\n"); return -1; } retval = 0; for (jno = 0; jno < njoints; jno++) { addr = &(custom_joint_home_data->custom_jhd[jno]); retval += hal_pin_bit_newf(HAL_IN, &(addr->request_custom_homing), id, "joint.%d.request-custom-homing", jno); retval += hal_pin_bit_newf(HAL_OUT, &(addr->is_custom_homing), id, "joint.%d.is-custom-homing", jno); } return retval; } // custom_makepins() static void custom_read_homing_in_pins(int njoints) { int jno; custom_one_joint_home_data_t *addr; for (jno = 0; jno < njoints; jno++) { addr = &(custom_joint_home_data->custom_jhd[jno]); customH[jno].request_custom_homing = *(addr->request_custom_homing); // IN // echo for verification: customH[jno].is_custom_homing = customH[jno].request_custom_homing; } } static void custom_write_homing_out_pins(int njoints) { int jno; custom_one_joint_home_data_t *addr; for (jno = 0; jno < njoints; jno++) { addr = &(custom_joint_home_data->custom_jhd[jno]); *(addr->is_custom_homing) = customH[jno].is_custom_homing; // OUT } } static int custom_1joint_state_machine(int joint_num) { typedef enum { CUSTOM_IDLE = 0, CUSTOM_1 = 1, CUSTOM_2 = 2, CUSTOM_3 = 3, CUSTOM_4 = 4, CUSTOM_FINI = 5, } custom_home_state_t; static custom_home_state_t chomestate[EMCMOT_MAX_JOINTS] = {0}; custom_home_state_t nextcstate; #define C_SHOW \ rtapi_print("H[%d].homed=%d,homing=%d,home_state=%d chomestate[%d]=%d next=%d\n" \ ,joint_num,H[joint_num].homed,H[joint_num].homing,H[joint_num].home_state \ ,joint_num,chomestate[joint_num],nextcstate); if ( H[joint_num].home_state == HOME_IDLE) return 0; // nothing to do if ((H[joint_num].home_state == HOME_START) && (chomestate[joint_num] == CUSTOM_IDLE) ) { H[joint_num].homing = 1; H[joint_num].homed = 0; chomestate[joint_num] = CUSTOM_1; // set first non-idle custom_home_state } // For this example, just walk thru custom_home_states with prints. // Note: remains in the base home_state: HOME_START for all custom_home_states. // On completion, return to HOME_IDLE, CUSTOM_IDLE states. switch (chomestate[joint_num]) { case CUSTOM_1: // Each CUSTOM_* state should do something and/or check something // and set nexstcstate according to the design goals. // Halpin variables can be read and/or set for next write. nextcstate=CUSTOM_2; C_SHOW; chomestate[joint_num] = nextcstate; break; case CUSTOM_2: nextcstate=CUSTOM_3; C_SHOW; chomestate[joint_num] = nextcstate; break; case CUSTOM_3: nextcstate=CUSTOM_4; C_SHOW; chomestate[joint_num] = nextcstate; break; case CUSTOM_4: nextcstate=CUSTOM_FINI; C_SHOW; chomestate[joint_num] = nextcstate; break; case CUSTOM_FINI: H[joint_num].homing = 0; H[joint_num].homed = 1; H[joint_num].home_state = HOME_IDLE; nextcstate = CUSTOM_IDLE; C_SHOW; chomestate[joint_num] = nextcstate; return 0; // finished custom_home_states break; case CUSTOM_IDLE: default: rtapi_print("Unhandled custom_home_state: %d\n",chomestate[joint_num]); } return 1; // return 1 if busy #undef C_SHOW } // custom_1joint_state_machine() // api functions below augment base_*() functions with custom code int homing_init(int id, double servo_period, int n_joints, int n_extrajoints, emcmot_joint_t* pjoints) { int retval; retval = base_homing_init(id, servo_period, n_joints, n_extrajoints, pjoints); retval += custom_makepins(id,n_joints); return retval; } // homing_init() void read_homing_in_pins(int njoints) { base_read_homing_in_pins(njoints); custom_read_homing_in_pins(njoints); } void write_homing_out_pins(int njoints) { base_write_homing_out_pins(njoints); custom_write_homing_out_pins(njoints); } /* do_homing() is adapted from homing.c:base_do_homing() augmented ** with support for custom homing as specified on hal input pin: ** joint.n.request-custom-homing and echoed on hal output pin ** joint.n.is-custom-homing */ bool do_homing(void) { int joint_num; int homing_flag = 0; bool beginning_allhomed = get_allhomed(); do_homing_sequence(); /* loop thru joints, treat each one individually */ for (joint_num = 0; joint_num < all_joints; joint_num++) { if (!H[joint_num].joint_in_sequence) { continue; } if (!GET_JOINT_ACTIVE_FLAG(&joints[joint_num])) { continue; } if (customH[joint_num].is_custom_homing) { // CUSTOM joint homing state machine: homing_flag += custom_1joint_state_machine(joint_num); } else { // DEFAULT joint homing state machine: homing_flag += base_1joint_state_machine(joint_num); } } if ( homing_flag > 0 ) { /* one or more joint is homing */ homing_active = 1; } else { /* is a homing sequence in progress? */ if (sequence_state == HOME_SEQUENCE_IDLE) { /* no, single joint only, we're done */ homing_active = 0; } } // return 1 if homing completed this period if (!beginning_allhomed && get_allhomed()) {homing_active=0; return 1;} return 0; } //=============================================================================== // functions below use unmodified base_*() implementation bool get_allhomed(void) { return base_get_allhomed(); } bool get_homed(int jno) { return base_get_homed(jno); } bool get_home_is_idle(int jno) { return base_get_home_is_idle(jno); } bool get_home_is_synchronized(int jno) { return base_get_home_is_synchronized(jno); } bool get_home_needs_unlock_first(int jno) { return base_get_home_needs_unlock_first(jno); } int get_home_sequence(int jno) { return base_get_home_sequence(jno); } bool get_homing(int jno) { return base_get_homing(jno); } bool get_homing_at_index_search_wait(int jno) { return base_get_homing_at_index_search_wait(jno); } bool get_homing_is_active(void) { return base_get_homing_is_active(); } bool get_index_enable(int jno) { return base_get_index_enable(jno); } void do_home_joint(int jno) { base_do_home_joint(jno); } void do_cancel_homing(int jno) { base_do_cancel_homing(jno); } void set_unhomed(int jno, motion_state_t motstate) { base_set_unhomed(jno,motstate); } void set_joint_homing_params(int jno, double offset, double home, double home_final_vel, double home_search_vel, double home_latch_vel, int home_flags, int home_sequence, bool volatile_home ) { base_set_joint_homing_params(jno, offset, home, home_final_vel, home_search_vel, home_latch_vel, home_flags, home_sequence, volatile_home); } void update_joint_homing_params(int jno, double offset, double home, int home_sequence ) { base_update_joint_homing_params (jno, offset, home, home_sequence ); } // end CUSTOM example //===================================================================== #else // } { begin SKELETON example minimal api implementation static emcmot_joint_t *joints; // data for per-joint homing-specific hal pins: typedef struct { hal_bit_t *home_sw; // home switch input hal_bit_t *homing; // joint is homing hal_bit_t *homed; // joint was homed hal_bit_t *index_enable; // motmod sets: request reset on index // encoder clears: index arrived hal_s32_t *home_state; // homing state machine state } one_joint_home_data_t; typedef struct { one_joint_home_data_t jhd[EMCMOT_MAX_JOINTS]; } all_joints_home_data_t; static all_joints_home_data_t *joint_home_data = 0; static int makepins(int id,int njoints) { // home_pins needed to work with configs expecting them: int jno,retval; one_joint_home_data_t *addr; joint_home_data = hal_malloc(sizeof(all_joints_home_data_t)); if (joint_home_data == 0) { rtapi_print_msg(RTAPI_MSG_ERR, "HOMING: all_joints_home_data_t malloc failed\n"); return -1; } retval = 0; for (jno = 0; jno < njoints; jno++) { addr = &(joint_home_data->jhd[jno]); retval += hal_pin_bit_newf(HAL_IN, &(addr->home_sw), id, "joint.%d.home-sw-in", jno); retval += hal_pin_bit_newf(HAL_OUT, &(addr->homing), id, "joint.%d.homing", jno); retval += hal_pin_bit_newf(HAL_OUT, &(addr->homed), id, "joint.%d.homed", jno); retval += hal_pin_s32_newf(HAL_OUT, &(addr->home_state), id, "joint.%d.home-state", jno); retval += hal_pin_bit_newf(HAL_IO, &(addr->index_enable), id, "joint.%d.index-enable", jno); } return retval; } // All (skeleton) functions required for homing api follow: void homeMotFunctions(void(*pSetRotaryUnlock)(int,int) ,int (*pGetRotaryIsUnlocked)(int) ) { return; } int homing_init(int id, double servo_period, int n_joints, int n_extrajoints, emcmot_joint_t* pjoints) { joints = pjoints; return makepins(id,n_joints); } bool do_homing(void) {return 1;} bool get_allhomed() {return 1;} bool get_homed(int jno) {return 1;} bool get_home_is_idle(int jno) {return 1;} bool get_home_is_synchronized(int jno) {return 0;} bool get_home_needs_unlock_first(int jno) {return 0;} int get_home_sequence(int jno) {return 0;} bool get_homing(int jno) {return 0;} bool get_homing_at_index_search_wait(int jno) {return 0;} bool get_homing_is_active() {return 0;} bool get_index_enable(int jno) {return 0;} void read_homing_in_pins(int njoints) {return;} void do_home_joint(int jno) {return;} void set_unhomed(int jno,motion_state_t motstate) {return;} void do_cancel_homing(int jno) {return;} void set_joint_homing_params(int jno, double offset, double home, double home_final_vel, double home_search_vel, double home_latch_vel, int home_flags, int home_sequence, bool volatile_home ) {return;} void update_joint_homing_params (int jno, double offset, double home, int home_sequence ) {return;} void write_homing_out_pins(int njoints) {return;} #endif // } end SKELETON example minimal api implementation //===================================================================== // all home functions for homing api EXPORT_SYMBOL(homeMotFunctions); EXPORT_SYMBOL(homing_init); EXPORT_SYMBOL(do_homing); EXPORT_SYMBOL(get_allhomed); EXPORT_SYMBOL(get_homed); EXPORT_SYMBOL(get_home_is_idle); EXPORT_SYMBOL(get_home_is_synchronized); EXPORT_SYMBOL(get_home_needs_unlock_first); EXPORT_SYMBOL(get_home_sequence); EXPORT_SYMBOL(get_homing); EXPORT_SYMBOL(get_homing_at_index_search_wait); EXPORT_SYMBOL(get_homing_is_active); EXPORT_SYMBOL(get_index_enable); EXPORT_SYMBOL(read_homing_in_pins); EXPORT_SYMBOL(do_home_joint); EXPORT_SYMBOL(do_cancel_homing); EXPORT_SYMBOL(set_unhomed); EXPORT_SYMBOL(set_joint_homing_params); EXPORT_SYMBOL(update_joint_homing_params); EXPORT_SYMBOL(write_homing_out_pins); #undef XSTR #undef STR #undef HOMING_BASE #undef USE_HOMING_BASE #undef CUSTOM_HOMEMODULE