// // Copyright (C) 2007-2008 Sebastian Kuzminsky // // This program is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 2 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA // // // The code in this file is based on bfload by John Kasunich and // m5i20cfg by Peter C. Wallace. See src/hal/util/bitfile.h for some // good comments on the bitfile format. // #include #include "rtapi.h" #include "rtapi_string.h" #include "rtapi_math.h" #include "hal.h" #include "hostmot2.h" #include "bitfile.h" static int bitfile_do_small_chunk(const struct rtapi_firmware *fw, bitfile_chunk_t *chunk, int *i) { if (*i + 2 > fw->size) { HM2_PRINT_NO_LL("bitfile chunk extends past end of firmware\n"); return -EFAULT; } chunk->size = (fw->data[*i] * 256) + fw->data[*i + 1]; (*i) += 2; if (*i + chunk->size > fw->size) { HM2_PRINT_NO_LL("bitfile chunk extends past end of firmware\n"); return -EFAULT; } chunk->data = &fw->data[*i]; if (chunk->data[chunk->size - 1] != '\0') { HM2_PRINT_NO_LL("bitfile small chunk is not NULL terminated\n"); return -EINVAL; } (*i) += chunk->size; return 0; } static int bitfile_do_big_chunk(const struct rtapi_firmware *fw, bitfile_chunk_t *chunk, int *i) { if (*i + 4 > fw->size) { HM2_PRINT_NO_LL("bitfile chunk extends past end of firmware\n"); return -EFAULT; } chunk->size = ((uint32_t)fw->data[*i] << 24) + ((uint32_t)fw->data[*i + 1] << 16) + ((uint32_t)fw->data[*i + 2] << 8) + fw->data[*i + 3]; (*i) += 4; if (*i + chunk->size > fw->size) { HM2_PRINT_NO_LL("bitfile chunk extends past end of firmware\n"); return -EFAULT; } chunk->data = &fw->data[*i]; (*i) += chunk->size; return 0; } static int bitfile_parse_and_verify_chunk(const struct rtapi_firmware *fw, bitfile_t *bitfile, int *i) { char tag; tag = fw->data[*i]; (*i) ++; if ((*i) > fw->size) { HM2_PRINT_NO_LL("bitfile chunk '%c' size fell off the end!\n", tag); return -EFAULT; } switch (tag) { case 'a': // Design name return bitfile_do_small_chunk(fw, &bitfile->a, i); case 'b': // Part ID return bitfile_do_small_chunk(fw, &bitfile->b, i); case 'c': // Design date return bitfile_do_small_chunk(fw, &bitfile->c, i); case 'd': // Design time return bitfile_do_small_chunk(fw, &bitfile->d, i); case 'e': return bitfile_do_big_chunk(fw, &bitfile->e, i); default: { HM2_PRINT_NO_LL("bitfile has unknown chunk '%c'\n", tag); break; } } // unknown chunks cause error, because we don't know if they're big or small return -EINVAL; } #define BITFILE_HEADERLEN 13 int bitfile_parse_and_verify(const struct rtapi_firmware *fw, bitfile_t *bitfile) { int i; int r; const unsigned char bitfile_header[BITFILE_HEADERLEN] = { 0x00, 0x09, 0x0f, 0xf0, 0x0f, 0xf0, 0x0f, 0xf0, 0x0f, 0xf0, 0x00, 0x00, 0x01 }; // // initialize all the bitfile chunks // bitfile->a.size = 0; bitfile->a.data = NULL; bitfile->b.size = 0; bitfile->b.data = NULL; bitfile->c.size = 0; bitfile->c.data = NULL; bitfile->d.size = 0; bitfile->d.data = NULL; bitfile->e.size = 0; bitfile->e.data = NULL; // // verify the header // if (fw->size < BITFILE_HEADERLEN) { HM2_PRINT_NO_LL("bitfile is too short\n"); return -EFAULT; } for (i = 0; i < BITFILE_HEADERLEN; i ++) { if (fw->data[i] != bitfile_header[i]) { HM2_PRINT_NO_LL("bitfile has invalid header\n"); return -EINVAL; } } // // parse and verify all the chunks // while (i < fw->size) { r = bitfile_parse_and_verify_chunk(fw, bitfile, &i); if (r != 0) return r; } // // make sure we got all the required chunks // if (bitfile->b.data == NULL) { HM2_PRINT_NO_LL("bitfile lacks Part Name (chunk 'b')!\n"); return -EINVAL; } if (bitfile->e.data == NULL) { HM2_PRINT_NO_LL("bitfile lacks FPGA Config (part 'e')!\n"); return -EINVAL; } // looks like a good bitfile return 0; } // // the fpga was originally designed to be programmed serially... even // though we are doing it using a parallel interface, the bit ordering // is based on the serial interface, and the data needs to be reversed // rtapi_u8 bitfile_reverse_bits(rtapi_u8 data) { static const rtapi_u8 swaptab[256] = { 0x00, 0x80, 0x40, 0xC0, 0x20, 0xA0, 0x60, 0xE0, 0x10, 0x90, 0x50, 0xD0, 0x30, 0xB0, 0x70, 0xF0, 0x08, 0x88, 0x48, 0xC8, 0x28, 0xA8, 0x68, 0xE8, 0x18, 0x98, 0x58, 0xD8, 0x38, 0xB8, 0x78, 0xF8, 0x04, 0x84, 0x44, 0xC4, 0x24, 0xA4, 0x64, 0xE4, 0x14, 0x94, 0x54, 0xD4, 0x34, 0xB4, 0x74, 0xF4, 0x0C, 0x8C, 0x4C, 0xCC, 0x2C, 0xAC, 0x6C, 0xEC, 0x1C, 0x9C, 0x5C, 0xDC, 0x3C, 0xBC, 0x7C, 0xFC, 0x02, 0x82, 0x42, 0xC2, 0x22, 0xA2, 0x62, 0xE2, 0x12, 0x92, 0x52, 0xD2, 0x32, 0xB2, 0x72, 0xF2, 0x0A, 0x8A, 0x4A, 0xCA, 0x2A, 0xAA, 0x6A, 0xEA, 0x1A, 0x9A, 0x5A, 0xDA, 0x3A, 0xBA, 0x7A, 0xFA, 0x06, 0x86, 0x46, 0xC6, 0x26, 0xA6, 0x66, 0xE6, 0x16, 0x96, 0x56, 0xD6, 0x36, 0xB6, 0x76, 0xF6, 0x0E, 0x8E, 0x4E, 0xCE, 0x2E, 0xAE, 0x6E, 0xEE, 0x1E, 0x9E, 0x5E, 0xDE, 0x3E, 0xBE, 0x7E, 0xFE, 0x01, 0x81, 0x41, 0xC1, 0x21, 0xA1, 0x61, 0xE1, 0x11, 0x91, 0x51, 0xD1, 0x31, 0xB1, 0x71, 0xF1, 0x09, 0x89, 0x49, 0xC9, 0x29, 0xA9, 0x69, 0xE9, 0x19, 0x99, 0x59, 0xD9, 0x39, 0xB9, 0x79, 0xF9, 0x05, 0x85, 0x45, 0xC5, 0x25, 0xA5, 0x65, 0xE5, 0x15, 0x95, 0x55, 0xD5, 0x35, 0xB5, 0x75, 0xF5, 0x0D, 0x8D, 0x4D, 0xCD, 0x2D, 0xAD, 0x6D, 0xED, 0x1D, 0x9D, 0x5D, 0xDD, 0x3D, 0xBD, 0x7D, 0xFD, 0x03, 0x83, 0x43, 0xC3, 0x23, 0xA3, 0x63, 0xE3, 0x13, 0x93, 0x53, 0xD3, 0x33, 0xB3, 0x73, 0xF3, 0x0B, 0x8B, 0x4B, 0xCB, 0x2B, 0xAB, 0x6B, 0xEB, 0x1B, 0x9B, 0x5B, 0xDB, 0x3B, 0xBB, 0x7B, 0xFB, 0x07, 0x87, 0x47, 0xC7, 0x27, 0xA7, 0x67, 0xE7, 0x17, 0x97, 0x57, 0xD7, 0x37, 0xB7, 0x77, 0xF7, 0x0F, 0x8F, 0x4F, 0xCF, 0x2F, 0xAF, 0x6F, 0xEF, 0x1F, 0x9F, 0x5F, 0xDF, 0x3F, 0xBF, 0x7F, 0xFF }; return swaptab[data]; }