1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
|
// -*- coding: utf-8 -*-
//
// disktest - Storage tester
//
// Copyright 2020-2024 Michael Büsch <m@bues.ch>
//
// Licensed under the Apache License version 2.0
// or the MIT license, at your option.
// SPDX-License-Identifier: Apache-2.0 OR MIT
//
use crate::generator::NextRandom;
use crate::util::fold;
use anyhow as ah;
use std::sync::OnceLock;
const CRC64_ECMA_POLY: u64 = 0xC96C5795D7870F42;
static CRC64_ECMA_LUT: OnceLock<[u64; 256]> = OnceLock::new();
/// Generate CRC lookup table.
fn crc64_gen_lut(p: u64) -> [u64; 256] {
let mut lut = [0_u64; 256];
for (i, item) in lut.iter_mut().enumerate() {
let mut d: u64 = i.try_into().unwrap();
for _ in 0..8 {
if d & 1 == 0 {
d >>= 1;
} else {
d = (d >> 1) ^ p;
}
}
*item = d;
}
lut
}
/// CRC64 step.
#[inline(always)]
fn crc64(lut: &[u64; 256], mut crc: u64, data: &[u8]) -> u64 {
for d in data {
crc = lut[((crc as u8) ^ *d) as usize] ^ (crc >> 8);
}
crc
}
pub struct GeneratorCrc {
folded_seed: [u8; GeneratorCrc::FOLDED_SEED_SIZE],
counter: u64,
}
impl GeneratorCrc {
/// Size of the algorithm base output data.
pub const BASE_SIZE: usize = 256 * GeneratorCrc::CRC_SIZE;
/// Default chunk size multiplicator.
pub const DEFAULT_CHUNK_FACTOR: usize = 1024 + 512;
const CRC_SIZE: usize = 64 / 8;
const FOLDED_SEED_SIZE: usize = 64 / 8;
pub fn new(seed: &[u8]) -> GeneratorCrc {
let _ = CRC64_ECMA_LUT.get_or_init(|| crc64_gen_lut(CRC64_ECMA_POLY));
assert!(!seed.is_empty());
let folded_seed = fold(seed, GeneratorCrc::FOLDED_SEED_SIZE)
.try_into()
.unwrap();
GeneratorCrc {
folded_seed,
counter: 0,
}
}
}
impl NextRandom for GeneratorCrc {
fn get_base_size(&self) -> usize {
GeneratorCrc::BASE_SIZE
}
fn next(&mut self, buf: &mut [u8], count: usize) {
debug_assert!(buf.len() == GeneratorCrc::BASE_SIZE * count);
let lut = CRC64_ECMA_LUT.get().unwrap();
for i in 0..count {
let chunk_offs = i * GeneratorCrc::BASE_SIZE;
// Initialize CRC based on the seed and current counter.
let mut crc = !0_u64;
crc = crc64(lut, crc, &self.folded_seed);
crc = crc64(lut, crc, &self.counter.to_le_bytes());
self.counter += 1;
// Fast inner loop:
// Generate the next chunk with size = BASE_SIZE.
for offs in 0..(GeneratorCrc::BASE_SIZE / GeneratorCrc::CRC_SIZE) {
// Advance CRC state.
debug_assert!(offs <= 0xFF);
crc = crc64(lut, crc, &(offs as u8).to_le_bytes());
// Get CRC output.
let crc_bytes = (!crc).to_le_bytes();
// Write CRC output to output buffer.
let begin = chunk_offs + (offs * GeneratorCrc::CRC_SIZE);
let end = chunk_offs + ((offs + 1) * GeneratorCrc::CRC_SIZE);
buf[begin..end].copy_from_slice(&crc_bytes);
}
}
}
fn seek(&mut self, byte_offset: u64) -> ah::Result<()> {
if byte_offset % GeneratorCrc::BASE_SIZE as u64 != 0 {
return Err(ah::format_err!(
"CRC seek: Byte offset is not a \
multiple of the base size ({} bytes).",
GeneratorCrc::BASE_SIZE
));
}
self.counter = byte_offset / GeneratorCrc::BASE_SIZE as u64;
Ok(())
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_cmp_result() {
let mut a = GeneratorCrc::new(&[1, 2, 3]);
fn reduce(acc: u32, (i, x): (usize, &u8)) -> u32 {
acc.rotate_left(i as u32) ^ (*x as u32)
}
let mut buf = vec![0u8; GeneratorCrc::BASE_SIZE * 3];
a.next(&mut buf[0..GeneratorCrc::BASE_SIZE], 1);
assert_eq!(buf.iter().enumerate().fold(0, reduce), 2183862535);
a.next(&mut buf[0..GeneratorCrc::BASE_SIZE], 1);
assert_eq!(buf.iter().enumerate().fold(0, reduce), 2200729683);
a.next(&mut buf[0..GeneratorCrc::BASE_SIZE * 2], 2);
assert_eq!(buf.iter().enumerate().fold(0, reduce), 17260884);
a.next(&mut buf[0..GeneratorCrc::BASE_SIZE * 3], 3);
assert_eq!(buf.iter().enumerate().fold(0, reduce), 581162875);
}
#[test]
fn test_seed_equal() {
let mut a = GeneratorCrc::new(&[1, 2, 3]);
let mut b = GeneratorCrc::new(&[1, 2, 3]);
let mut res_a: Vec<Vec<u8>> = vec![];
let mut res_b: Vec<Vec<u8>> = vec![];
for _ in 0..2 {
let mut buf = vec![0u8; GeneratorCrc::BASE_SIZE];
a.next(&mut buf, 1);
res_a.push(buf);
let mut buf = vec![0u8; GeneratorCrc::BASE_SIZE];
b.next(&mut buf, 1);
res_b.push(buf);
}
assert_eq!(res_a[0], res_b[0]);
assert_eq!(res_a[1], res_b[1]);
assert_ne!(res_a[0], res_a[1]);
assert_ne!(res_b[0], res_b[1]);
}
#[test]
fn test_seed_diff() {
let mut a = GeneratorCrc::new(&[1, 2, 3]);
let mut b = GeneratorCrc::new(&[1, 2, 4]);
let mut res_a: Vec<Vec<u8>> = vec![];
let mut res_b: Vec<Vec<u8>> = vec![];
for _ in 0..2 {
let mut buf = vec![0u8; GeneratorCrc::BASE_SIZE];
a.next(&mut buf, 1);
res_a.push(buf);
let mut buf = vec![0u8; GeneratorCrc::BASE_SIZE];
b.next(&mut buf, 1);
res_b.push(buf);
}
assert_ne!(res_a[0], res_b[0]);
assert_ne!(res_a[1], res_b[1]);
assert_ne!(res_a[0], res_a[1]);
assert_ne!(res_b[0], res_b[1]);
}
#[test]
fn test_concat_equal() {
let mut a = GeneratorCrc::new(&[1, 2, 3]);
let mut b = GeneratorCrc::new(&[1, 2, 3]);
let mut buf_a = vec![0u8; GeneratorCrc::BASE_SIZE * 2];
a.next(&mut buf_a[0..GeneratorCrc::BASE_SIZE], 1);
a.next(
&mut buf_a[GeneratorCrc::BASE_SIZE..GeneratorCrc::BASE_SIZE * 2],
1,
);
let mut buf_b = vec![0u8; GeneratorCrc::BASE_SIZE * 2];
b.next(&mut buf_b, 2);
assert_eq!(buf_a, buf_b);
}
#[test]
fn test_seek() {
let mut a = GeneratorCrc::new(&[1, 2, 3]);
let mut b = GeneratorCrc::new(&[1, 2, 3]);
b.seek(GeneratorCrc::BASE_SIZE as u64 * 2).unwrap();
let mut bdata = vec![0u8; GeneratorCrc::BASE_SIZE];
b.next(&mut bdata, 1);
let mut adata = vec![0u8; GeneratorCrc::BASE_SIZE];
a.next(&mut adata, 1);
assert_ne!(adata, bdata);
a.next(&mut adata, 1);
assert_ne!(adata, bdata);
a.next(&mut adata, 1);
assert_eq!(adata, bdata);
a.next(&mut adata, 1);
assert_ne!(adata, bdata);
}
}
// vim: ts=4 sw=4 expandtab
|