summaryrefslogtreecommitdiffstats
path: root/mlplib/optimize.py
blob: 588e315f903e7cb99a35e269e73b7462c2ef9812 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
"""
# -*- coding: utf-8 -*-
#
# Copyright 2021 Michael Büsch <m@bues.ch>
#
# Licensed under the Apache License version 2.0
# or the MIT license, at your option.
# SPDX-License-Identifier: Apache-2.0 OR MIT
#
"""

__all__ = [
    "AlphaDecay",
    "AlphaDecaySimple",
    "AlphaDecayExp",
    "AlphaDecaySqrt",
    "Optimizer",
    "GradDescent",
    "Momentum",
    "RMSProp",
    "Adam",
]

from abc import ABC, abstractmethod
from mlplib.backward import BackpropGrads
from mlplib.parameters import Parameters
import numpy as np

class Optimizer(ABC):
    """Optimizer abstract base class.
    """

    def __init__(self,
                 params: Parameters,
                 alpha: float) -> None:
        self.params = params
        self.alpha = alpha

    @abstractmethod
    def apply(self,
              epoch: int,
              gradients: BackpropGrads) -> None:
        """Optimizer function.
        """

class GradDescent(Optimizer):
    """Simple Gradient Descent optimizer.
    """

    def apply(self,
              epoch: int,
              gradients: BackpropGrads) -> None:
        alpha = self.alpha
        for ((w, b, *_), dw, db) in zip(self.params,
                                        gradients.dw,
                                        gradients.db):
            # Adjust weights and biases.
            w -= alpha * dw
            b -= alpha * db

class Momentum(Optimizer):
    """Momentum Gradient Descent optimizer.
    """

    def __init__(self,
                 params: Parameters,
                 alpha: float = 0.01,
                 beta: float = 0.9) -> None:
        super().__init__(params, alpha)
        self.beta = beta
        self.vdw = []
        self.vdb = []
        for (w, b, *_) in params:
            self.vdw.append(np.zeros(w.shape))
            self.vdb.append(np.zeros(b.shape))

    def apply(self,
              epoch: int,
              gradients: BackpropGrads) -> None:
        epoch += 1
        assert epoch > 0

        alpha = self.alpha
        beta = self.beta
        beta_inv = 1.0 - beta
        beta_powi_inv = 1.0 - (beta ** epoch)

        for (vdw, vdb,
             (w, b, *_),
             dw, db) in zip(self.vdw, self.vdb,
                            self.params,
                            gradients.dw, gradients.db):
            # Apply momentum to the derivatives.
            vdw *= beta
            vdw += beta_inv * dw
            vdb *= beta
            vdb += beta_inv * db

            # Bias correction.
            cvdw = vdw / beta_powi_inv
            cvdb = vdb / beta_powi_inv

            # Adjust weights and biases.
            w -= alpha * cvdw
            b -= alpha * cvdb

class RMSProp(Optimizer):
    """RMSProp optimizer.
    """

    def __init__(self,
                 params: Parameters,
                 alpha: float = 0.01,
                 beta: float = 0.9) -> None:
        super().__init__(params, alpha)
        self.beta = beta
        self.epsilon = np.finfo(np.float32).eps
        self.sdw = []
        self.sdb = []
        for (w, b, *_) in params:
            self.sdw.append(np.zeros(w.shape))
            self.sdb.append(np.zeros(b.shape))

    def apply(self,
              epoch: int,
              gradients: BackpropGrads) -> None:
        epoch += 1
        assert epoch > 0

        alpha = self.alpha
        beta = self.beta
        beta_inv = 1.0 - beta
        beta_powi_inv = 1.0 - (beta ** epoch)
        epsilon = self.epsilon
        sqrt = np.sqrt

        for (sdw, sdb,
             (w, b, *_),
             dw, db) in zip(self.sdw, self.sdb,
                            self.params,
                            gradients.dw, gradients.db):
            # Calculate (R)MS of the derivatives.
            sdw *= beta
            sdw += beta_inv * (dw * dw)
            sdb *= beta
            sdb += beta_inv * (db * db)

            # Bias correction.
            csdw = sdw / beta_powi_inv
            csdb = sdb / beta_powi_inv

            # Adjust weights and biases.
            w -= alpha * (dw / (sqrt(csdw) + epsilon))
            b -= alpha * (db / (sqrt(csdb) + epsilon))

class Adam(Optimizer):
    """Adam optimizer.
    """

    def __init__(self,
                 params: Parameters,
                 alpha: float = 0.001,
                 beta1: float = 0.9,
                 beta2: float = 0.999) -> None:
        super().__init__(params, alpha)
        self.beta1 = beta1
        self.beta2 = beta2
        self.epsilon = np.finfo(np.float32).eps
        self.vdw = []
        self.sdw = []
        self.vdb = []
        self.sdb = []
        for (w, b, *_) in params:
            self.vdw.append(np.zeros(w.shape))
            self.sdw.append(np.zeros(w.shape))
            self.vdb.append(np.zeros(b.shape))
            self.sdb.append(np.zeros(b.shape))

    def apply(self,
              epoch: int,
              gradients: BackpropGrads) -> None:
        epoch += 1
        assert epoch > 0

        alpha = self.alpha
        beta1 = self.beta1
        beta2 = self.beta2
        beta1_inv = 1.0 - beta1
        beta2_inv = 1.0 - beta2
        beta1_powi_inv = 1.0 - (beta1 ** epoch)
        beta2_powi_inv = 1.0 - (beta2 ** epoch)
        epsilon = self.epsilon
        sqrt = np.sqrt

        for (vdw, vdb,
             sdw, sdb,
             (w, b, *_),
             dw, db) in zip(self.vdw, self.vdb,
                            self.sdw, self.sdb,
                            self.params,
                            gradients.dw, gradients.db):
            # Apply momentum to the derivatives.
            vdw *= beta1
            vdw += beta1_inv * dw
            vdb *= beta1
            vdb += beta1_inv * db

            # Calculate (R)MS of the derivatives.
            sdw *= beta2
            sdw += beta2_inv * (dw * dw)
            sdb *= beta2
            sdb += beta2_inv * (db * db)

            # Bias correction.
            cvdw = vdw / beta1_powi_inv
            cvdb = vdb / beta1_powi_inv
            csdw = sdw / beta2_powi_inv
            csdb = sdb / beta2_powi_inv

            # Adjust weights and biases.
            w -= alpha * (cvdw / (sqrt(csdw) + epsilon))
            b -= alpha * (cvdb / (sqrt(csdb) + epsilon))

class AlphaDecay(ABC):
    """Learning rate decay base class.
    """

    def __init__(self,
                 optimizer: Optimizer,
                 decay_rate: float):
        self.optimizer = optimizer
        self.alpha0 = optimizer.alpha
        self.decay_rate = min(max(decay_rate, 0.0), 1.0)

    @property
    def alpha(self):
        return self.optimizer.alpha

    def apply(self,
              epoch: int,
              *args, **kwargs):
        self.optimizer.alpha = self.decay(epoch)
        self.optimizer.apply(epoch, *args, **kwargs)

    @abstractmethod
    def decay(self, epoch: int):
        """Learning rate decay function.
        """

class AlphaDecaySimple(AlphaDecay):
    """
            1.0
    alpha = ------------------------ * alpha0
            1.0 + decay_rate * epoch
    """

    def decay(self, epoch: int):
        return self.alpha0 / (1.0 + (self.decay_rate * epoch))

class AlphaDecayExp(AlphaDecay):
    """
    alpha = ((1.0 - decay_rate) ** epoch) * alpha0
    """

    def decay(self, epoch: int):
        return ((1.0 - self.decay_rate) ** epoch) * self.alpha0

class AlphaDecaySqrt(AlphaDecay):
    """
            decay_rate
    alpha = ----------- * alpha0
            sqrt(epoch)
    """

    def decay(self, epoch: int):
        epoch += 1
        assert epoch > 0
        return (self.decay_rate * self.alpha0) / np.sqrt(epoch)

# vim: ts=4 sw=4 expandtab
bues.ch cgit interface