1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
|
use core::{
cell::{Cell, UnsafeCell},
mem::MaybeUninit,
};
pub use crate::hw::Mutex;
pub use avr_device::interrupt::CriticalSection;
macro_rules! define_context {
($name:ident) => {
pub struct $name<'cs>(CriticalSection<'cs>);
impl<'cs> $name<'cs> {
/// Create a new context.
///
/// # SAFETY
///
/// This may only be called from the corresponding context.
/// `MainCtx` may only be constructed from `main()`
/// and `IrqCtx` may only be constructed from ISRs.
#[inline(always)]
pub unsafe fn new() -> Self {
// SAFETY: This cs is used with the low level PAC primitives.
// The IRQ safety is upheld by the context machinery instead.
//
// If a function takes a `MainCtx` argument, it can only be
// called from `main()` context. Correspondingly for `IrqCtx`.
//
// At the low level the `MutexCell` and `MutexRefCell` ensure
// that they can only being used from the main context.
// With this mechanism we can run the main context with IRQs
// enabled. There cannot be any concurrency in safe code.
let cs = unsafe { CriticalSection::new() };
fence();
Self(cs)
}
/// Get the `CriticalSection` that belongs to this context.
#[inline(always)]
#[allow(dead_code)]
pub fn cs(&self) -> CriticalSection<'cs> {
self.0
}
/// Convert this to a generic context.
#[inline(always)]
pub fn to_any(&self) -> AnyCtx {
AnyCtx::new()
}
}
impl<'cs> Drop for $name<'cs> {
#[inline(always)]
fn drop(&mut self) {
fence();
}
}
};
}
define_context!(MainCtx);
define_context!(IrqCtx);
/// Main context initialization marker.
///
/// This marker does not have a pub constructor.
/// It is only created by [MainCtx].
pub struct MainInitCtx(());
impl<'cs, 'a> MainCtx<'cs> {
/// SAFETY: The safety contract of [MainCtx::new] must be upheld.
#[inline(always)]
pub unsafe fn new_with_init<F: FnOnce(&'a MainInitCtx)>(f: F) -> Self {
// SAFETY: We are creating the MainCtx.
// Therefore, it's safe to construct the MainInitCtx marker.
f(&MainInitCtx(()));
// SAFETY: Safety contract of MainCtx::new is upheld.
unsafe { Self::new() }
}
}
pub struct AnyCtx(());
impl AnyCtx {
/// Create a new generic context.
#[inline(always)]
pub fn new() -> Self {
Self(())
}
/// Convert this into a [MainCtx].
///
/// # SAFETY
///
/// You must ensure that either:
///
/// - We actually are running in main context or
/// - If we are running in interrupt context, then
/// all all things done with this MainCtx must be safe w.r.t.
/// the interrupted main context.
/// e.g. atomic accesses have to be used. etc. etc.
#[inline(always)]
pub unsafe fn to_main_ctx<'cs>(&self) -> MainCtx<'cs> {
// SAFETY: See function doc.
unsafe { MainCtx::new() }
}
}
/// Lazy initialization of static variables.
pub struct LazyMainInit<T>(UnsafeCell<MaybeUninit<T>>);
impl<T> LazyMainInit<T> {
/// # SAFETY
///
/// It must be ensured that the returned instance is initialized
/// with a call to [Self::init] during construction of the [MainCtx].
/// See [MainCtx::new_with_init].
///
/// Using this object in any way before initializing it will
/// result in Undefined Behavior.
#[inline(always)]
pub const unsafe fn uninit() -> Self {
Self(UnsafeCell::new(MaybeUninit::uninit()))
}
#[inline(always)]
pub fn init(&self, _m: &MainInitCtx, inner: T) {
// SAFETY: Initialization is required for the `assume_init` calls.
unsafe { *self.0.get() = MaybeUninit::new(inner) };
}
#[inline(always)]
#[allow(dead_code)]
pub fn deref(&self, _m: &MainCtx) -> &T {
// SAFETY: the `Self::new` safety contract ensures that `Self::init` is called before us.
unsafe { (*self.0.get()).assume_init_ref() }
}
#[inline(always)]
#[allow(dead_code)]
fn deref_mut(&mut self, _m: &MainCtx) -> &mut T {
// SAFETY: the `Self::new` safety contract ensures that `Self::init` is called before us.
unsafe { (*self.0.get()).assume_init_mut() }
}
}
// SAFETY: If T is Send, then we can Send the whole object. The object only contains T state.
unsafe impl<T: Send> Send for LazyMainInit<T> {}
// SAFETY: The `deref` and `deref_mut` functions ensure that they can only be called
// from `MainCtx` compatible contexts.
unsafe impl<T> Sync for LazyMainInit<T> {}
/// Optimization and reordering fence.
#[inline(always)]
pub fn fence() {
core::sync::atomic::fence(core::sync::atomic::Ordering::SeqCst);
}
pub struct MutexCell<T> {
inner: Mutex<Cell<T>>,
}
impl<T> MutexCell<T> {
#[inline]
pub const fn new(inner: T) -> Self {
Self {
inner: Mutex::new(Cell::new(inner)),
}
}
#[inline]
#[allow(dead_code)]
pub fn replace(&self, m: &MainCtx<'_>, inner: T) -> T {
self.inner.borrow(m.cs()).replace(inner)
}
#[inline]
#[allow(dead_code)]
pub fn as_ref<'cs>(&self, m: &MainCtx<'cs>) -> &'cs T {
// SAFETY: The returned reference is bound to the
// lifetime of the CriticalSection.
unsafe { &*self.inner.borrow(m.cs()).as_ptr() as _ }
}
}
impl<T: Copy> MutexCell<T> {
#[inline]
pub fn get(&self, m: &MainCtx<'_>) -> T {
self.inner.borrow(m.cs()).get()
}
#[inline]
pub fn set(&self, m: &MainCtx<'_>, inner: T) {
self.inner.borrow(m.cs()).set(inner);
}
}
/// Cheaper Option::unwrap() alternative.
///
/// This is cheaper, because it doesn't call into the panic unwind path.
/// Therefore, it does not impose caller-saves overhead onto the calling function.
#[inline(always)]
#[allow(dead_code)]
pub fn unwrap_option<T>(value: Option<T>) -> T {
match value {
Some(value) => value,
None => reset_system(),
}
}
/// Cheaper Result::unwrap() alternative.
///
/// This is cheaper, because it doesn't call into the panic unwind path.
/// Therefore, it does not impose caller-saves overhead onto the calling function.
#[inline(always)]
#[allow(dead_code)]
pub fn unwrap_result<T, E>(value: Result<T, E>) -> T {
match value {
Ok(value) => value,
Err(_) => reset_system(),
}
}
/// Reset the system.
#[inline(always)]
#[allow(clippy::empty_loop)]
pub fn reset_system() -> ! {
loop {
// Wait for the watchdog timer to trigger and reset the system.
// We don't need to disable interrupts here.
// No interrupt will reset the watchdog timer.
}
}
#[inline(always)]
#[panic_handler]
fn panic(_: &core::panic::PanicInfo) -> ! {
reset_system();
}
// vim: ts=4 sw=4 expandtab
|